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INTRODUCTION

Let

co

j(z) = L amzm
trl,=O

(1)

have a radius of convergence Uo (0 < Uo :s;; +00).
The entries of the Pade table of (1) are ratios of polynomials which may be

represented explicitly in terms of the Hankel determinants introduced below.
Let (m, n) be a pair of nonnegative integers; put

and consider the determinants

(j = 1,2, 3,...)

Dmo(z) = 1. (3)

am am- 1 am- 2

A(n) am+1 am am- 1
m

am+n- 1 am+n- 2 am+n- 3

and the polynomials

1 z Z2

am+1 am am-l
Dmn(z) = Q,m+2 am+1 am

am+n am+n- 1 am+n- 2

am -- n+1

am --n +2

1, (2)
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Whenever A~7) 'F 0, we introduce the normalized Pade denominator of the
entry (m, n) of the table of (I)

Qmn(Z) = DA'~~)z) .... ~. qJ(m, n) z -:- ... + qn(m, n) z". (4)
m

The corresponding, normalized, Pade numerator is given by

HI

with

Pmn(Z) = I pj(m, n) zj,
j~O

(5)

I
p;(m, n) = Aln)

m

aj-J
am
Gm+1

aj_n

am - n+1

am _ n+:! (6)

The constant term and leading coefficient of Pmn(z)

poem, n) = ao , (7)

playa dominant role in this note.
H is convenient to express the fundamental property of the approximant

PmnlQmn in terms of a contour integral involving an arbitrary polynomial of
suitable degree: If Vmn(z) is a given polynomial of degree ~n, we have

where we may take for contour '{;' the circumference I , I = r (0 < r < ao)

described in the positive sense. (A simple deduction of this elementary
formula is found in [3, p. 436]).

The Pade polynomials Pmn , Qmn are obvious generalizations of the notion
of partial sum (or section) of the power series (1). One may expect that the
distribution of the zeros of the Pade polynomials is described by theorems
analogous to the classical results of Jentzsch, Szego, Carlson, and
Rosenbloom.

I show here that, if ao < + 00, that is if the series (1) has a finite radius of
convergence, the analogy with the results of Jentzsch and Szego is complete;
I prove

THEOREM 1. Let fez), defined by (1), be a nonrational function whose
radius of meromorphy is T (ao ~ T ~ + 00). This means that fez) is mero-
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morphic in the disk i z I < T and also that, if T < + 00, there is a nonpolar
singularity off(z) on the circumference Iz i = T.

Let n ~ 0 be a given integer and let an (,s;:; + (0) be the radius of the largest
disk Iz I < an which contains no more than n poles of fez) and none of its
nonpolar singulairities.

Then, if an < + 00, it is possible to find an unbounded sequence Sen), of
strictly increasing positive integers, which behaves as follows.

I. A:,:')A:,:'+I) of=- 0 (m E Sen)).

II. Consider the normalized Pade numerators Pmn(z). Given EO

(0 < EO < I) and mE Sen), there are, in the annulus

(1 - EO) an ,s;:; I z I ,s;:; (1 + EO) an ,

m(1 - 7]m) zeros of Pmn(z), where

0< 7]m, 7]m -+ 0 (m -+ (0).

III. If N(m; fIJI 'flJ2) denotes the number of zeros of Pmn(z) whose
arguments lie in the interval

we have

N(m; fIJI , flJ2) -+ f{!2 - fIJI
Tn 27T

(m -+ 00, m E Sen)). (9)

For n = 0, Theorem I coincides with Szego's remarkably precise form of
Jentzsch's theorem [13].

If fez) is entire, the preceding result does not apply because an = +00 for
all n. On the other hand, the results of Carlson [1] and Rosenbloom [10]
suggest very specific conjectures concerning the behavior of the zeros of the
Pade polynomials associated with entire functions of infinite order or of
finite, positive order. I have recently established these conjectures and
propose to present my results on some other occassion.

It is possible to assert a good deal more about the zeros of the Pade
polynomials if one is prepared to assume more aboutf(z). Results which are
interesting and suggestive may be derived from the close study of some
special choices of fez). Among them, the choice

fez) = eZ

stands out as particularly important: It was the foundation ofPade's original
work and, quite recently, it has led Saff and Varga [12] to results which are a
model of elegance and precision.
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My proof of Theorem 1 makes essential use of the following elementary
property of sequences.

LEMMA 1. Let {CXm}:~l be a complex sequence such that

lim sup lexm[l/III == l.
rn~X)

Then, if
lim inf I CXm ?/m < I,

m-tXJ

(10)

(11)

there exists an infinite sequence st, of positive, strictly increasing integers,
such that the conditions

imply

m ---+ CD, mE!!?, (12)

(13)

The following remarks show that Lemma I, and in particular its very
simple proof, may have some independent interest.

PROPOSITION A. If, in addition to (10) we assume

lim sup I exm
2

- cxm+lexm-1 11 / m< I,
m--tx,

(14)

relations (13), and consequently also (11), cannot hold. Hence (10) and (14)
imply

lim i CXm 1
1 / m = 1.

rn~Y)

(15)

Proposition A may be considered as a restatement of an important lemma
of Hadamard [5, pp. 26-28; 2, p. 330, Lemma 2]. Hadamard discovered and
used the lemma to establish his fundamental results on polar singularities
[5, pp. 24-40; 2, pp. 329-335]. Hadamard's original proof is not very simple
and he says about his lemma "c'est Ie point d6licat du raisonnement" [6,
p. 80]. More than 30 years after Hadamard's discovery, Ostrowski [7] and
P6lya [8] returned to the question and gave new elementary proofs of
Hadamard's lemma. I believe that my proof (in Section 3), of the more
informative Lemma I, is notably simpler than any of the published proofs of
Hadamard's lemma.

I conclude this introduction by stating some notational conventions which
are used throughout the paper:

(i) Restrictions such as m > mo , immediately following some relation,
mean that the relation in question holds for sufficiently large values of m;
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(ii) by {1]m}m I denote a sequence such that 1]m ---+ °as m ---+ 00. The
positivity of the 1]m'S is not assumed;

(iii) it is understood that the sequences {17m} and the bounds mo are not
necessarily the same ones each time they occur.

1. THE SEQUENCE OF POLES OF fez) AND THE POLYNOMIALS Vk(z)

If
Uo = T < +00,

there are no poles of fez) closer to the origin than the nonpolar singularity or
singularities which lie on the circumference I z 1= T.

In all other cases, poles are present and we list explicitly all those which lie
in the open disk I z 1 < T,

(1.1)

The above sequence may be finite or infinite; multiple poles are repeated as
often as indicated by their multiplicities and the sequence arranged so that

If (1.1) has a last element, say bl , it is convenient to set

00 = bl+1 = bl+2 = ....

We define Vo(z) 0:=, 1, and for all values of k = 1,2,3,...

(1.2)

(1.3)

Whenever necessary, we interpret, with their obvious meaning, the relations
(1.3) in the light of the convention (1.2).

It is clear that our definitions always imply

(1.4)

2. UPPER BOUNDS FOR THE PADE POLYNOMIALS

For every value of the integer k ~ 0, set

(2.1)
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]n every case,fk(z) represents a function regular for

(k = 0, 1,2,3,... ), (2.2)

and hence, by Cauchy's estimate

provided

(2.3)

0< E < uo , .1', k = 0, 1,2,....

Again, we define a~k) = 0 for s < 0; this enables us to use (2.3) without the
restriction s ? O.

My Lemma 2.1 stated and proved below is little more than a rearrangement
of the well-known arguments which led Hadamard to his important results
on polar singularities. For the convenience of the reader I sketch a brief,
self-contained proof.

LEMMA 2.1. Let Dmn(z) be the determinant defined in (3) and let

Llmn(t) = max I Dmn(z)l.
iz: tc,t

Then, for nand t fixed (1 :s; n, 0 :s; t), we have

and in particular, for t = 0,

n-1

lim sup i A;:) 1
11m :s; TI ujl.

nl---')'l) .
J~O

(2.4)

(2.5)

(2.6)

If U n -1 = + 00, the right-hand sides of(2.5) and (2.6) are to be interpreted as O.

Proof We assume, in the following proof, that U n - 1 < + 00; the slight
modifications necessary to cover the case U n - 1 = +00 are obvious and are
left to the reader. The determinant Dm,,(z) is of order n + 1; we number its
rows from 0 to n. To each one of its rows we add a linear combination of the
preceding rows. More precisely, to the jth row we add a linear combination
of the rows 1, 2, 3, ... , j - 1, with the respective coefficients

This transforms the jth row of the determinant Dmn(z) into

(j-l) (j-l) (;-l) (;-l)
am..:,} , Qm+)-l , a m+j - 2 , .•• , Gm+i--n • (2.7)
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Following this procedure, we modify successively the rows n, n - I, n - 2, ... ,
2; the rows I and 0 remain unaltered. This leads to a new form 15(z) of
D;:>(z); the rows 1,2,3,... , n of 15(z) are given by (2.7) withj == 1,2,3,... , n.

Using (2.3), we find

(j - n :'( I :'( )),
(2.8)

where we may choose

K = I + (ao - E)-l + an-I'

It is no restriction to assume t ;? 1. Hence, for a suitable value of Zo

(I Zo I = t), we have, in view of (2.8)

n-1
:'( (n + I)! tnK,,2MoM1M2 ... M n- 1 TI (aj -- E)-m. (2.9)

j~O

Hence with t, n, and E fixed, (2.9) yields

(2.10)

Since the left-hand side of (2.10) is independent of E, we deduce (2.5) from
(2.10) by letting E --+ 0+. This completes the proof of Lemma 2.1.

LEMMA 2.2. Let the value of the integer n ;? 0 be fixed, let an < +00 and
let the values of m be restricted to some infinite sequence !E of strictly in
creasing positive integers such that

n-1
i A(n) 1

11m TI .-:-1I m -+ U 1

j~O

(m ---+ 00, m E !E, n ;? I). (2.11 )

[For n = 0 our definitions imply A:::> = I and (2.11) takes the trivial form
I A:::> 11/m ---+ I as m ---+ 00.]

Put

Q m max ! Pmn(z)[. (2.12)
!zl=on

Then

Q~~m ---+ I (m ---+ 00, m E !E). (2.13)

Proof Since
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it is clear that

°
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(m > fIlo , fIl E 2').

Hence, by (4), (2.4), (2.5), and (2.11)

max: Qmn(Z) I = Amll
zl=On

(2.14)

Amn :S:; (I (YJm --+ 0, fII -->- 00, m E 2'). (2.15)

(The above relation is trivial if n = 0.)
In the remainder of the proof n is fixed and we simplify our notation by

writing

Pm, Qm, V, Am, a, piCtn),

instead of

Select E(0 < 3E < a) such that V(z) has no zeros in the annulus

a - 3E < I z I < a;

E is otherwise arbitrary. Clearly

(2.16)

We now introduce M (necessarily finite) by the relation

p1ax :reo Veol = M. (2.17)
i",1 "'-""O-E

Consider (8) and notice that, since fez) V(z) is regular for! z < a, we may
use for contour '(j the circumference

1'1 = a-E.

By elementary estimates, (8), (2.16), and (2.17) now yield

min I V(z) I max [Pm(z)1 :S:; (I + ajE) MAm ,
Izl=o-2E Iz '=a-2€

max I Pm(z)i :S:; 2E-n-lan+IMAIiI .
zi=a-2c '

This inequality and Cauchy's estimate imply

(2.18)

(j = 0, 1,2,... , m),
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and hence, by (2.12) and (2.15),

Qm :s.;; 2(m + I) c n- 1an+lM(1 + YJm)m (aj(a - 2E))m

lim sup Q;;m :s.;; aj(a - 2E).
m->oo
mE!£'

259

(m EO ll'),

The left-hand side of this relation is independent of E and consequently,
letting E -+ 0+, we may replace its right-hand side by 1. Since

Q m ?: IP",(O) [ = I ao I =!' 0,

we immediately obtain (2.13) and thus complete the proof of Lemma 2.2.

3. LEMMA I AND ITS CONSEQUENCES

ProofofLemma 1. Let L > I and E > °be given. Assume that E is small
enough to imply

lim inf [ am 1
11m < I - E;

m->w

there are no further restrictions on E.

Since (ljm)l/m -+ 1 as m -+ 00, we also have, by (10) and (3.1)

(3.1)

I a 1

11m
lim sup --"!'.. = 1,

m-?co m I a 1
11m

lim inf --"!'.. < 1 - E.
m~CIJ m (3.2)

From (3.2) we deduce the existence of three integers j, k, I such that

L <j < k < I

and

I
a· /l /i

_.J < 1 - E,

.I I 1

1/k7;- > I - E, I a 1

1/1-+ <: 1 - E.

Then there must exist some integer m such that

L <j < m < I, I ex 1

11m I ex /l /S--"!'.. = max _s .
m i<s<l S

Hence the four following inequalities hold simultaneously:

I ex 1

11m
--"!'.. >I-E

Tn '
m >L, (3.3)

I
a 1

11m I a /1 / (m-1)m '> m-lm :/ 111-1 ' I

a 1
1
/'" / a 1

1/
(m+1)--"!'.. >-0 ~

111 ~ 111+1 . (3.4)
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By (3.4) and (3.3)

ALBERT EDREI

Icx'" j211 - (1 - ~2)1 :> (I - E)2m, 111:> L. (3.5)

We now use the preceding inequalities to define, successively, the members
m(j) (j = 1,2,3,...) of the sequence !f of Lemma 1. Assume that m(j)
(j = 1,2,... , N) have been determined. In view of the arbitrary character of
E and L we may use (3.5) with

E = N + 1 ' L = m(N).

Hence (3.5) enables us to select m = m(N + 1) such that

, 1 2
I cx 2 cx 11/m > II )
I m - m+lCX"'-l I \ - N + 1 '

i CX", 1
1

/
m > I - N ~ l' m(N + I) > m(N).

This concludes our proof of Lemma I since it is now obvious that the
sequence

!f = {m(N)}%~l

has the properties expressed by (12) and (13).

4. SELECTION OF THE SEQUENCE S(n)

We start from the relations

(n = 1,2,3,...), (4.1)

which follow, by induction, from the reasoning in [2, p. 334]. The formulation
(4.1), which is the most convenient one for my purpose, is clearly equivalent
to the fundamental results of Hadamard on polar singularities [2, pp. 329
335].

LEMMA 4.1. Let the assumptions and notations of Theorem I be satisfied.
Let the integer n ~ I be given and let Un < + CYJ.

It is then possible to determine an infinite sequence S(n), of strictly in
creasing positive integers such that, as

m -->- 00, m ES(n), (4.2)
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the two relations
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n-1

I A:) 1
11m

-+ f1 ajI,
j~O

simultaneously hold.

Proof From

n

I A (n+1) 111m f1;-1
m -+- OJ,

j~O

(4.3)

and (4.1) we see that

(O~j~n), (4.4)

0< hi < +00
Write

(1 ~j ~ n + 1).

and introduce the sequences {(Xm}, {Ym}, {om} defined by

= h-mA(n)
CXm m ,

_ h-mA(n+1)Ym - m, (4.5)

From the well-known identity

{A
(n)}2 _ A(n) A(n) = A(n+1)A(n-1)
m m+l m-l m m (n ~ 1, m ~ 0)

[9, p. 102, Example 19] (the notation of P6lya and Szego differ from the ones
adopted here), we deduce

and from (4.1), (4.4), and (4.5)

lim sup [ (Xm 1
11m = 1,

m->"O

lim sup IYm 111m = _1_ ,
m4 00 an

lim sup I Om 1
11m = an-1 •

m~x:

From (4.6) and (4.7) we also conclude

(4.6)

(4.7)

(4.8)

(4.9)

Now there are two possibilities; either

X<1
or

x=1.

(4.11)

(4.12)
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Assume first that (4.11) is sati4ied. Then, (4.7), (4.10), (4.11), and
Hadamard's lemma [stated as Proposition A of the Introduction] show that
(15) holds. We next use (4.8), and see that there exists an infinite sequence
Sen) such that

(m ---... 00, m E Sen)). (4.13)

Hence, as a trivial consequence of (15),

(m ---... 00, m E Sen)). (4.14)

Using (4.5) we express (4.13) and (4.14) in terms of A;,:'+l), A;,:') and imme
diately obtain (4.3).

If (4.11) does not hold, (4.12) must be satisfied. Now either (15) holds
or we may use Lemma I (stated in the Introduction) and take Sen) = .P.
With this new meaning of Sen), (4.14) still holds and, by (13) and (4.6),

(m ---... 00, m E Sen)),

1 <; (lim inf I y", 11/"')(lim sup I 0", Ill"').
m~OC m~oo

"'ES(n)

(4.15)

Hence, if the lim inf in the above relation is <l/un , we must, in view of (4.9)
have

This contradicts (4.4) and, consequently, (4.13) as well as (4.14) must hold
with the new meaning of Sen). As in the preceding argument we thus establish
(4.3). The proof of Lemma 4.1 is now complete.

5. PROOF OF THEOREM 1

Consider first the case n ~ 1; n is a given integer, Sen) is the infinite se
quence whose existence is established in Lemma 4.1, and

P",n(Z) = P",(z) = ao + pim, n) z + ... + p",(m, n) z'"

(5.1)(m E Sen))= Go fI (1 _ z )
i~l zJCm, n)

defines the associated sequence of Pade numerators.
The values of the coefficients plm, n) are explicitly given by (6). For our

purpose it is essential to note the value of the leading coefficient p",(m, n)
given in (7).
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Since n remains fixed throughout the proof we omit it from the notation
unless the omission is likely to create confusion. We write below

instead of

S(n), Pmn , Pm(m, n), zJCm, n), an'

We perform the change of variable

t = zla (5.2)

and consider beside Pm(z) the auxiliary polynomial Tm(t) of the variable t

m

Tm(t) = Pm(at) = ao + Pl(m) at + ... + Pm(m) amtm = L t;(m) t i . (5.3)
i~O

By Lemma 4.1 we have as

the limit relations

m ->- 00, mES, (5.4)

Now by (5.3)

I
A:+l) 1

11m
->- ~

A(n) a .
m

(5.5)

(5.6)

(5.7)

and by (5.5) and Lemma 2.2,

10gQm = oem) (m ->- 00, m E S). (5.8)

From this point on, the proof of assertion III of Theorem 1 may be obtained
by using a simple and elegant result of Rosenbloom's [10, Theorem XIII,
p. 25]. To avoid a proof based on some work which may be difficult to
consult, we use, instead, a classical theorem of Erdos and Turan [4J. The
latter result, published several years after Rosenbloom's thesis, is unneces
sarily precise for the purpose of the present note. Rosenbloom restated and
generalized in [11] many results of his dissertation. Since, in his later version,
Rosenbloom only sketches most of his proofs, it may be that [4] still provides
the easiest access to complete arguments.
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In order to apply the result of Erdos and Turan we consider the expression

x L7~o i tlm) [
", - I to(m) t",(m)1 1 / 2 •

By (7), (5.3), and (5.6)

[to(m) tm(m) I = I Go [ am IPm(m) [ = j Go [(1 + TJm)m, (5.9)

with TJm --+ 0 under the conditions (5.4).
From (5.7), Cauchy's estimate, and (5.8) we deduce

log C~o I tlm)l) ~ log(m + 1) + log Qm = oem),

and hence, in view of (5.9)

(In the preceding estimates we have used our notational convention about
TJm .)

The theorem of Erdos and Turan [4, Theorem 1, p. 106] now asserts

This clearly implies (9) and assertion III of Theorem I is proved.
To prove assertion II of the Theorem denote by Vm the number of zeros of

Tm(t) in the disk

[t [ ~ 1 - E:

Then, by Jensen's formula

(0 < E: < 1).

log I Go I + Vm log ( 1 ~ E: )

~ log I Go I + L log! I z (~)[ja I~ log Qm
q'j(m) I/a),~l-E j

and hence by (5.8)

Vm = oem) (m --+ 00, m ES). (5.10)

Similarly, considering the polynomial
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instead of Tm(t), we see that the number vmof zeros of Pm(z) in the region

I z I :?' 0'(1 + €)

satisfies the condition

265

Vm = oem) (m -+- 00, m E S). (5.11)

Assertion II of Theorem 1 follows from (5.10) and (5.11). This completes the
proof of Theorem 1 in the case n :?' 1.

The case n = 0 is of interest since it corresponds to the original theorem of
Jentzsch and Szego. In order to cover it by the above method, it suffices to
observe that, since A~) = 1, we may select S(O) to be any infinite sequence
such that

(m -+- 00, m E S(O».

REFERENCES

1. F. CARLSON, Sur les fonctions entieres, Arkiv Mat. Astronom. Fys. 35A (1948), 1-18.
2. P. DIENES, "The Taylor series," Oxford, 1931.
3. A. EDREI, The Pade table of functions having a finite number of essential singularities,

Pacific J. Math. 56 (1975), 429-453.
4. P. ERDOS AND P. TURAN, On the distribution of roots of polynomials, Ann. of Math.

51 (1950), 105-119.
5. J. HADAMARD, "CEuvres," Vol. 1, Paris, 1968.
6. J. HADAMARD AND S. MANDELBROJT, "La serie de Taylor," 2nd ed., Paris, 1926.
7. A. OSTROWSKI, Dber einen Satz von Herm Hadamard, Jber. Deutsch. Math.- Verein.

35 (1926), 179-182.
8. G. P6LYA, Sur I'existence d'une limite consideree par M. Hadamard, Enseignement

Math. 76--78 (1924--1925).
9. G. P6LYA AND G. SZEGO, "Aufgaben und Lehrsatze aus der Analysis," Vol. II, Berlin,

1925.
10. P. C. ROSENBLOOM, Sequences of polynomials, especially sections of power series,

Ph.D. dissertation, Stanford, 1943.
11. P. C. ROSENBLOOM, "Distribution of zeros of polynomials, Lectures on Functions of a

Complex Variable" (W. Kaplan, Ed.), Univ. of Michigan Press, Ann Arbor, 1955.
12. E. B. SAFF AND R. S. VARGA, On the zeros and poles of Pade approximants to eO,

Numer. Math. 25 (1975), 1-14.
13. G. SZEGO, Dber die Nullstellen von Polynomen, die in einem Kreise gleichmassig

konvergieren, S.-B. Berlin Math. Ges. 21 (1922), 59-64.


